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1. Introduction

Public interest in food quality and methods of production
has increased significantly in recent decades, due in part to
changes in eating habits, consumer behavior, and the
increased industrialization and globalization of food supply
chains.! Demand for high levels of quality and safety in food
production obviously requires high standards in quality
assurance and process control; satisfying this demand in turn
requires appropriate analytical tools for food analysis both
during and after production. Desirable features of such tools
include speed, ease-of-use, minimal or no sample preparation,
and the avoidance of sample destruction. These features are
characteristic of a range of spectroscopic methods including
the mid-infrared (MIR). While it is true that near-infrared
(NIR) spectroscopy has achieved greater uptake by the food
industry,” reported applications of MIR in this sector have
increased over the past decade or more.

Foods represent significant analytical challenges. They are
highly complex, variable and can be found in a number of
different physical states: these include solids, dilute solutions,
emulsions, foams, highly visco-elastic forms, and glassy

* To whom correspondence should be addressed. E-mail: karouiromdhane @
yahoo.fr.

" University of Liege.

* Ashtown Food Research Centre.

10.1021/cr100090k

Received March 14, 2010

Blaise Pascal University (Clermont-Ferrand, France) and his accreditation
to supervise research in 2009. He has a long-term scientific experience
in the fields of spectroscopic methods, and in the application of multivariate
statistical methods. During the past 10 years, his research is focused on
chemometrics with applications in the area of spectroscopy, food
technology, and process analysis. He is the author of 60 peer-reviewed
scientific papers and more than 35 proceedings, book contributions, and
reviews.

Professor Gérard Downey obtained his Ph.D. degree in 1997 and a D.Sc.
from Queen’s University Belfast in 2005 for his contribution to NIR
research. His main research interests lie in the application of fingerprint
spectroscopic techniques (mainly near-infrared and mid-infrared) and
multivariate data analysis to the rapid and nondestructive measurement
of food quality. He has participated widely in EU research projects, and
has authored or coauthored 97 peer-reviewed papers, 88 technical
publications, and 10 book chapters.

states. This has obvious consequences for the analytical tools
and strategies that must be developed for analysis of these
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complicated, heterogeneous systems. Food systems are
mainly composed of water, carbohydrates, proteins, fats, and
other constituents that are present at low (mg/100 g)
concentrations such as vitamins, minerals, etc. All of these
components may contribute to the shape of the absorbance
spectrum obtained in the mid-infrared region, although, in
practice, the major components (water, carbohydrates, pro-
teins, fats) dominate because constituents present at concen-
trations below approximately 0.1% w/w are difficult to detect
in water-rich systems. Food heterogeneity results in consider-
able spectral complexity and conventional approaches to the
use of spectra for, for example, quantitative predictions of
major compounds may not be applied. A major advance in
the application of MIR techniques to food analysis and other
commodities has been in the application of powerful
mathematical techniques known collectively as chemomet-
rics. Such data analysis methods allow the extraction of
valuable information from large and complex data sets and
now underpin the application of MIR spectroscopy in many
analytical fields.

Despite the growth in application reports, we are unaware
of any review of the use of FT-IR spectroscopy for the
analysis of foods in the past 5 years; therefore, a summary
of work in this area is now warranted. The application of
FT-IR spectroscopy to the monitoring of some specific
biological processes such as fermentation has recently been
reviewed? and will not, therefore, be covered in this Review.
Rather, following a brief discussion of the principles and
practice of MIR spectroscopy, this Review will provide a
comprehensive overview of its application to the determi-
nation of the quality of several ingredients and food products.
Actual examples illustrating the use of the technique in both
laboratory and industrial environments will be discussed.

2. Infrared Spectroscopy — Overview of Theory
and Principles

Chemical bonds vibrate at specific frequencies, which are
determined by the mass of the constituent atoms, the shape
of the molecule, the stiffness of the bonds, and the periods
of the associated vibrational coupling. A specific vibrational
mode must be associated with a molecule’s dipole moment
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to absorb in the infrared spectral region. Diatomic molecules
have only one bond that may stretch (i.e., the distance
between two atoms may increase or decrease). More complex
molecules have many bonds; vibrations can also be conju-
gated leading to two possible modes of vibration: stretching
and bending. Phenomena that can further complicate the
interpretation of MIR spectra include the presence of
overtone and combination bands and Fermi resonances.
Despite these potential problems, absorption frequencies may
be used to identify specific chemical groups, and this
capability has traditionally been the main role of FT-IR
spectroscopy.*

The MIR region of the electromagnetic spectrum lies
between 4000 and 400 cm™! and can be segmented® into
four broad regions: the X—H stretching region (4000—2500
cm '), the triple bond region (2500—2000 cm ™), the double
bond region (2000—1500 cm™!), and the fingerprint region
(1500—400 cm™).

Characteristic absorption bands are associated with major
components of food. Water is a significant absorber in the
MIR spectral region and can interfere with the determination
of other components present in food systems.® Major bands
are present at 3920, 3490, 3280, and 1645 cm™!, although
the exact location and shape of these bands may be affected
by the presence of solutes,”® hydrogen-bonding, and
temperature.”'° The triglyceride ester linkage C—O at ~1175
cm™!, the C=0 group (~1750 cm™"), and the acyl chain
C—H (3000—2800 cm™') frequencies are commonly used
to determine fat,''~'* while the amide I (~1653 cm™!) and
II bands (~1567 cm™!) have been used for the estimation of
protein'>!® and changes in protein secondary structure.!’ !
Vibrations arising from C—O and C—H stretch in the region
between 1100 and 1000 cm™' may be used to identify
aqueous sugar molecules,** while more complex carbohy-
drate structures found in plants have major absorption bands
at higher wavenumbers, for example, hemicellulose (1732,
1240 cm ™), cellulose (1170—1150, 1050, 1030 cm™ '), lignan
(1590, 1510 cm™!), and pectin (1680—1600, 1260, 955
cm1).212

Absorptions in the fingerprint region are mainly caused
by bending and skeletal vibrations, which are particularly
sensitive to large wavenumber shifts, thereby mitigating
against unambiguous identification of specific functional
groups.’ Even in this region, however, the spectrum may be
used as a fingerprint of a sample such as a food product or
food ingredient. Analysis of such fingerprints forms the basis
of many applications of MIR spectroscopy in food analysis.
Broad fields of application include constituent quantification
and qualification issues for food and food ingredients;
substance identification and authentication are included in
the latter field.>*~2¢

For further information on band assignment in the MIR
region, the reader may refer to other texts.*>>%2’~2° For a
fuller review of the fundamentals of MIR spectroscopy, the
reader is referred to other publications.?***~32 Descriptions
of MIR instrumentation are beyond the scope of this Review;
the interested reader is directed to other sources.>*3*

2.1. Sample Presentation

A critical development in MIR instrumentation regarding
its application to complex biological structures and com-
pounds has been the emergence of innovative sample
presentation techniques.** Historically, these were restricted
to fixed path length transmission cells in the case of liquid
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Figure 1. (a) Fourier transform infrared (FTIR) and (b) attenuated total reflection Fourier transform infrared (FTIR-ATR) for the analysis

of dilute and intact food samples.

samples; for solids, alkali halide discs, mulls, and films were
the standard options.’ However, all of these required
considerable sample processing and generally destroyed the
material under investigation. Some examples of their use with
foods have been reported,?® but they require very small
sample quantities, of the order of milligrams, and, while this
may be an advantage for identification of synthesized
molecules, it can pose problems for heterogeneous materials
such as food in relation to representativity of such a small
sample.

Sample presentation developments have included photoa-
coustic spectroscopy (PAS) and diffuse reflectance (DRIFT).”
PAS is based on the energy released into a system as a result
of sample relaxation after infrared absorption. If such energy
is released in a closed cell containing the sample and a gas
(e.g., helium), the gas expands, thereby producing sounds
that can be detected via sensitive microphones. While
relatively straightforward in principle and suited to powder
samples in particular, the extraction of high-quality informa-
tion from PAS systems is difficult in practice, and it is not
a common analytical procedure; applications in food analysis
are very rare, although PAS analysis of flour* and choco-
late*! has been reported. DRIFT involves the collection and
measurement of diffusely reflected radiation emerging from
crystalline or particulate sample materials; it is therefore
appropriate for the analysis of powders, but the unavoidable
presence of specularly reflected radiation (which contains
no compositional information about the sample) degrades
the spectral information and presents an analytical chal-
lenge.®> Applications of DRIFT to food analysis are limited
in number, although reports do exist of its use in determining
the degree of esterification of pectic substances,**** the
characterization of rice,*** a study of beans,* determination
of fruit type in jams,* coffee varietal discrimination,*®* and,
more recently, classification of Italian honeys.>® Specular
reflection measurements are also appropriate for powdered
samples, although the sample surface needs to be smooth,
necessitating the use of a surface film in some applications.

This approach is mainly deployed for polymer analysis,>!
and the authors are unaware of any reported application in
food.

Probably the most useful development has been the
introduction of a simple reflectance technique called attenu-
ated total reflectance (ATR; Figure 1).>%° With ATR, a
sample (liquid or solid) is simply placed in intimate contact
with the top horizontal surface of a crystal of high refractive
index; typically, such crystals are made of zinc selenide
(ZnSe), germanium (Ge), diamond, or thallium iodide (KRS-
5). The ATR system measures changes in intensity that occur
in a totally internally reflected infrared beam when the beam
comes into contact with the sample. This interaction occurs
when radiation entering the crystal undergoes total internal
reflection at the top inner surface of the crystal one or more
times; values of 9 or 11 are common depending on the exact
geometry of the crystal. A standing wave called an evanes-
cent wave is generated at the point of each reflection,
penetrates the sample, interacts with it, and reduces its
intensity at certain wavenumbers, thereby producing a
spectrum. The penetration depth of this evanescent wave
depends on the incident angle of the radiation, the crystal
and sample refractive indices, and the infrared frequency.
In general, it is only of the order of several (0.1—5)
micrometers; this has an advantage, however, in that it makes
sampling in aqueous solutions possible.?

ATR is a versatile and powerful technique for easy infrared
sampling. It is useful for sampling the surface of smooth
materials that are either too thick or too opaque for
transmission measurements. ATR is a nondestructive method;
in addition, little or no sample preparation is needed, and it
allows fast and simple sampling regardless of the state of
the food system (liquid, gel, solid, etc.). There must be a
very good contact between the sample and the crystal surface
to ensure the collection of high-quality, representative
spectral data. Performance with solids is generally poorer
than with liquids or gels given the difficulty in obtaining
uniform and intimate contact between such samples and the
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crystal surface. With solids, the use of a clamp accessory
by means of which a standard pressure may be exerted on
the material being analyzed may be useful. It should also be
noted that most of the ATR crystals available have pH
limitations. A caveat with ATR is that, because the measure-
ment is taken essentially at a contact surface, high surface
homogeneity is required for representative and accurate
measurements.

3. Multivariate Statistical Analysis of IR Spectral
Data

Chemical information contained in MIR spectra resides
in the band positions, intensities, and shapes. Whereas band
positions give information about the molecular structure of
chemical compounds in a mixture, the intensities of the bands
are related to the concentration of these compounds as
described by the Beer—Lambert law. The easiest way to
determine the content of a chemical compound is to measure
the change in the intensity of a well-resolved band that has
been unambiguously attributed to this compound. This is
possible for a pure component system, but foods contain
numerous components giving rise to complex spectra with
overlapping bands. The most successful approach to extract-
ing quantitative, qualitative, or structural information from
such spectra is to use multivariate mathematical analysis.
These powerful methods and the computer technology
necessary to use them have only become readily available
in recent years, but their use has become a significant feature
of IR spectroscopy. A broad range of techniques is now
available including data reduction tools, regression tech-
niques, and classification methods.

Principal component analysis (PCA) is a commonly used
data compression and visualization tool, reducing a spectral
data set into a small (generally less than 20) number of new,
orthogonal (i.e., noncorrelated) variables on each of which
a score (or value) for each sample is calculated. Graphical
display of these scores can often reveal patterns or clustering
within a data set because similar samples are expected to
locate close to each other; unexpected sample locations in
this hyperspace may alert the analyst to unusual or outlying
samples, which may be reanalyzed or, as a final resort,
deleted from the data set prior to further data processing.
Principal component scores may be used in further math-
ematical operations to classify samples into different,
naturally occurring groups. Similar data reduction approaches
include canonical correlation analysis (CCA) and common
components and specific weights analysis (CCSWA). A
number of procedures are available for sample classification
or discrimination; soft independent modeling of class analogy
(SIMCA) is an example of a popular class-modeling method,
while linear discriminant analysis (LDA), hierarchical cluster
analysis (HCA), factorial discriminant analysis (FDA),
artificial neural networks (ANN), and discriminant partial
least-squares (PLS) are examples of much-used discriminant
methods. Class-modeling methods focus on characterizing
each of the classes of sample being analyzed and involve
calculation of a model and boundaries within which samples
of each particular type may be expected to be found.
Discriminant methods focus on characterizing the boundaries
between samples of different classes and do not involve the
calculation of statistically robust confidence limits for each
class. The use of IR spectra for quantification purposes may
be achieved by regression techniques such as principal
component regression (PCR) or PLS regression. As for PCA,
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PLS regression is based on the construction of new,
uncorrelated factors from the original spectral data. A major
difference between PCA and PLS regression is that, while
PCA reduces the quantity of spectral data independently of
any associated chemical information, PLS calculates new
variables by selecting those dimensions that explain the
maximum variance in both the spectral and the associated
reference data sets. Therefore, PLS regression incorporates
variables in the data that are relevant for describing the
variation in associated chemical data. For fuller coverage of
chemometric tools and procedures, the interested reader is
referred to other sources.>*

4. Application of IR Spectroscopy to Food
Analyses

The number of reports of the application of FT-MIR and
chemometric tools to food analysis has increased significantly
in the last two decades. In the following sections, a range of
such applications will be described grouped into sections on
the basis of the nature of the food product.

4.1. Dairy Products

Curd formation is the essential step in cheese manufacture
because it determines both the composition and the structure
of the final cheese. Although considerable changes in curd
structure occur during pressing, salting, and ripening pro-
cesses,* all of these steps require excellent control of the
coagulation process to obtain an optimum product. Although
MIR spectroscopy has been widely used for the determination
of several milk properties (e.g., milk composition), only
limited studies describing the use of this method for
monitoring the milk coagulation process have been published.
Cecchinato et al.®® and De Marchi et al.%®® assessed the
potential of FT-MIR for the determination of milk coagula-
tion properties, titratable acidity, and pH in Brown Swiss
milk samples. Using 1200 individual cows in 30 herds
located in northern Italy, MIR spectra (4000—900 cm ™) and
PLS regression were utilized to predict rennet coagulation
time and curd firmness.%> The outcome was poor because
the best model developed for rennet coagulation time only
provided an approximate prediction with a squared correla-
tion coefficient (R?) varying in the 0.61—0.69 range and a
root-mean-square error of calibration (RMSEC) of 2.3—-2.5
min (Table 1). The authors concluded that such models only
allowed differentiation between low and high values. Pre-
dicted curd firmness did not permit even this differentiation.
A study of the effect of lactation period and feed type on
the quality of ewe’s milk was reported by Maimouri et al.®’
Using 12, 5-year-old lactating Sicilo-Sarde ewes, two groups
(6 animals in each) were fed ad libitum iso-energetic diets
based on either soybean or scotch bean meal. Differences in
milk from the two groups of animals throughout the lactation
period resulted in changes in the MIR spectra of milk, which
reflected variations in its physicochemical composition
(reduction in fat and increase in lactose content).”’” By
applying PCA to the 3000—2800 and 1500—900 cm™!
spectral ranges, a good visual discrimination of milk samples
on the basis of the feed was possible.

Determination of cheese quality throughout the ripening
period is an important requirement for cheese producers.
Several studies®>” have focused on this topic, and three
spectral rtegions have been used: (i) 3000—2800 cm™!,

characteristic of fat; (i) 1700—1500 cm™!, characteristic of



Karoui et al.

6148 Chemical Reviews, 2010, Vol. 110, No. 10

SuIyIOOWS + JATBALIOP

2618 32 moIey| 81°0 = dASINY 9L°0 (/M %) S€—€T | WO 006—000E  d0ourYAI 1S3 -+ voREZI[ELLIOU NIl
uryjoowrs
o [8 10 MOIEY] S0°0 = dASINY 790 (WM %) L'y—y WO 00p—000F  9UBIOIPAI o+ QAIBALIP 181 - UoREZIPLLIOU
urgloows
o [8 10 MOIEY] 110 = ADASINY €€0 (/M %) §%—T¥ | WO 00F—000F  doueRPaI + GATRALIOP 1S1Y - UOTEZI[RULIOU
UOI}0ALI0d
[BUY 10J Pasn sem | WO ()T Pue
000C U2aM}aq SIN[EA ddUBGIOSqe
Jo aSe10A® 9y} pajoenqns yue[q
ay) uayy pue wnnoads oy Jo senfea
[Te WOIJ pajoenqns sem wniodds
¢g T8 39 UOU] 1°0 = ADISINY eu (A/% %) €v—0 (-Wo 009—000%  @dueIdRPI or9 Jo adueqlosqe |_ud 00TT
Iayem pastuorap aind
4’ T2 19 uoIz1g %TT0 = dd eu (A/M %) 6'€—€'T  |_WO 000T—000F  OURIOS[I ym ampadoid uonoengns I9jem urejoxd
¢1'T8 19 UdsudIBS 9%GS€0°0 = JASINY BU %yP—1"7  _W 0001 —000€ Q0uB)OPI pauonuaw jou urosed
QouaIRJaI 10119 Y oSuer pamsesw oSuer powt jusunjeanaid eyep JUSNITISUOD
uonoipaid/uoneiqred JOQUINUAABM JUSWIAINSBAW

980U puk Y[\ UI SIQQUEIE [BIIWAYI0ISAYJ JO UOTIIPAI]

198 BJep UOLEPI[RA I0J %/ 06
39S BJep UONEPI[EA I0] %08

-9 006—00S1
-3 00ST—00LT

$9S99YD
25’18 19 oIy 195 BJEp UOHEBPI[EA I0J 2%6°06 [ WO 00ST—000E  20UBIOJ[aI uoneZIfeuIou 0dd ZeAnd, | pue 214nin
)9S BIRp UOTEPI[BA
pue uoneiqIfes 3oq 10} %L'96 1-Wo 006—008T
A[oA10adsar ‘s3os eyep uoneprea
pue uoneIqres 10 9/°96 pue %688 W3 00ST—00LI
I9JUIM JuLImp
paInjoeJNUBW SALFUNOD
K[oAnoadsar ‘sjos eyep uonepifea ueodoIny JUQISJJIP Woij
o5 T8 10 oIey] PUE UONRIQI[®D 10J 9/'G8 PUB 9%[H8 |, WO 008T—000E  SOUBIOIAI uonezZIfewIou SuneurSuo sasoyd (U
A1oAnoadsar ‘s)as ejep uonepifea
pue uoneiqiyes Ioj 95/ / pue 9%/"¢8 -2 006—00S1
A1oAnoadsar ‘)as ejep uonepifea
pue uoneIqres 10 %98y pue %S48 W3 00ST—00LI
Imoejnuew
JOUWIWINS — SOINUNOD
A1oAanoadsar ‘s)as ejep uonepifea ueodoInyg JUAISJJIP WOIY
o, T8 19 morey] PUB UONRIQI[®D 10J 9%/'6T PUB %t LG [ WO )08T—000E  SOUBIOdAI uoneZIfewIou SuneurSuo sesooyd [ejuswY
AJoAnoadsar ‘s)os ejep uoneprfea $9S39YD 1JOS JO IIUD pue
1, T8 19 morey pue uoneIqI[ed I0J 9¢°¢¢ Pue %849 _W0 006—000€  9ouBIOAPAI UOIBZI[EWIOU 90BJINS U2IMIOq UONENUIIJIP
QoUQIRJRI PayIsse[d A[)021100 9, q3uer apowt juourjeanaid ejep 19jowrered
JOqUINUIABM JUSWRINSBIW
Aronuayiny 9sa9y)
U 9°9—L°¢ = DHSINI~ ¢S°0—61°0 (urw) 65—9 (%tp) ssouwiy pind
g9 T8 39 OJBUIDI37 uir ¢'¢—¢C = DISINI 69'0—19°0 (unw) 9°'67—T'°¢ -9 006—0001  2oUEIO9PL auou (dD¥) own uonemseod Jouudx
Q0UIRJaI 10119 .Y oSuer pamsesw oSuer opow juounjeanard ejep JUSNINISUOD
uonoipaid/uoneiqieds IoqUINUAABM JUSWRINSBIW

uoneseo) YA

,s1npoad Lieq 03 £dodsoxydadg YIIA Jo uonedrddy -1 djqey,



Chemical Reviews, 2010, Vol. 110, No. 10 6149

Mid-Infrared Spectroscopy Coupled with Chemometrics

paxenbs :_y “10110 wonorpaid

“JUSIOYJO0D UOTIB[LIOD

Ad "UONEPI[BA-SSOID JO IOLId dxenbs ueaw 1001 1 ADHSINY "uonoipaid Jo 1011 arenbs ueawr 1001 :JSIAY "UONEBIQI[ED JO JOLID drenbs ueaw 1001 :DFSIAY o[qeordde jou 'e'u,

¥'L = ADdSINY 88°0 1'9v—8'C Amayd
¥'L = ADdSINY 88°0 6'0L—9°C SsouuLIy
¥'L = ADASINY 06°0 ge8—cel Sunjow
'L = ADISINY 060 L'0L—L01 Awrearo
PR1O01I00-10)380S
W 6€8T—0001 JO QATJEALISP ISIY JO QUOU
o' [8 19 ueSeq 9t = ADASINY 060 9Otr—6'C pue 0g6—L9L]  99UBIOQPAI Sem wnoads Yoed Jo 9ouRqIOSqe K1oqqn1
Q0UQIQJAI 10119 uonorpaid .Y a3uel panseouwr a3uelr Jpowr juouneanaid ejep JUANNSUOD
JOqUINUOABM JUQWIAINSBAW
95294 Ieppay) Ul SAINQUNY AIOSUSS JO UONOIPAI]
Suryoows + SANBALIIDP
26 [8 19 INOIBY L1°0 = dASINY 6L°0 (M/m %) €€-TC —Wo 006—000¢  9duEId9pPal ISIy + coﬁmN:mEHom:ﬁﬂwwwWE
6518 32 InOIED] 80°0 = JASINY 88°0 (M/m %) €T—10 -2 007—000F  95UBIO9PaI =+ SATBALISP 1S1Y 4 co%mN:aES:
uryloows
gg T8 39 INOIeD] L0'0 = ADASINY 080 (M/m %) $'1-50 1-W2 007—000F  @dUBIddPal + SANBALISP JSIY + UOHEZI[EULIOU
(;_Wd 0S6 PUL ‘06%1
‘00LT ‘0081 ‘0S8T ‘000¢) syurod
15’ T8 10 odwe)-[ap-unen €€l = ADASINY L0 B 001/3) 1T401—8'ST (W0 0S9—000F ~ 9ouBIdI[AL XIS 72 e1oads JO UOr)0aII0d aurfeseq uoSomu o[qn[os-Iorem
Surpoowrs
6 [€ 12 INOIEY] S0°0 = dJASINY £8°0 (M/m %) 0'1-C0 -2 00P—000y  eoueldayal =+ 9ANBALISp ISIY 4 cﬁmuﬁ:m:boc
uryloows
gg [ 30 INOIeD] 80°0 = ADISINY 1.0 (M/m %) T1-€0 -2 00F—000y  °oueldayal =+ 9ANBALIOD )SIY 4 UONEZI[eULIOU
;W2 0S6 PUB ‘0611
‘00LT ‘0081 ‘0S8 ‘000¢) s1utod
15’ T8 19 oduwre)-[op-untepy 9 = ADASINY 86°0 B 001/3) 0S—1°¢ |_Wd )S9—Q00F  dourIdI[AI XIS 78 BNo2ds Jo uonoaL1od aurfaseq uoSoniu urejorduou
uryoows 4 9ANBALIP
26 1€ 12 InoIes] £€8'0 = ddSINY L80 (M/m %) 6'0S—9'€ -2 006—000€  @dUBIOAPI 151 + UOREZI[BULIOU Wnixeu
(;_Wd 0S6 PU® ‘0611
‘00LT ‘0081 ‘0S8T ‘000¢) syutod
15’ T8 10 odwe)-[ap-uney L0'T = ADASINY 6670 B 001/3) L'9P—97C¢E (WO 0S9—(000F  QourIOAal XIS 72 e102ds JO UOI)091I0d durfeseq 1o1eW KIp
SurgIoows + 9ANRALIOD
26 1B 19 INOIBY] 91'0 = ddSINY ¥8°0 S'L—19 1-Wo 006—000¢  *dUEIdAPal 1SIY + UONEZI[BULIOU wnuiixXeu
Sungjoows
6 [€ 32 INOIED] £€0°0 = dJdSINY ¥8°0 09-¢¢ -2 00P—000y  eoueldayal =+ 9ANBALISp ISIY 4- UONEZI[EUWLIOU
urypoowrs
gg € 30 INOIed] S00°0 = ADISINY 9¢°0 6'6—¢6'¢ -9 00F—000y  eoueldayal =+ 9ANBALIOD ISIY 4 UONEZI[EULIOU
(;_W2 056 PUB ‘0611
‘00LT ‘0081 ‘0S8T ‘000¢) swutod
15’ T8 19 oduwre)-[op-uney 8€°0 = ADASINY $6°0 6L—9 ,_Wd 0S9—(Q00F  QouBIOAPaI XIS 78 BNo2ds Jo uUonoaL10d aurfaseq Hd
SuIyoOOWs 4 9ATNBALIOP
6 1€ 10 InoTes] ¥1'¢ = JdSINY £€8°0 (M/m %) S'9€—€'TC 1-W2 006—000€  @dUBIOAI 181y + :oumN:mEhom uinuixeu
UrIoows
63 1B 19 INOIBD] 8'0 = ddSINY LSO (m/m %) 8€—8C 1-Wo 00—000%  @dUEIdAPal -+ 9ANBALISP JSIY 4 UONEZI[EULIOU
UO1}0AII0D
[BUY 10 PIsn SBM | WO ())TZ Pue
0007 U99m1dq Son[eA adueqlosqe
Jo aSeroAe o) ‘pajoenqns Jue[q
oy} uey) pue wnnoads oYy Jo sonyea
[Te woIjy pajoenqns sem wnnoads
¢g 1B 30 UOU[ Y20 = ADISINY L (A/M %) 9¢—1°0 1-WO 009—000y  @duEld9pal ora JO 9doueqlosqe | _Wd )0TT ey
Q0URIdJaI 10119 Y J3uel pamseaw J3uer apowr juouneanald ejep JUAMINSUOD
uonorpaid/uoneiqies JoquInuoAeM JUSWINSEBIW

9S99YD) pue Y[IA UI SI9JOWeRIR [BIIWAYI0IISAYJ JO UONOIPAI]

panunuo) ‘[ J[qeL,



6150 Chemical Reviews, 2010, Vol. 110, No. 10

0.006 1

0.005 |

0.004 1

0.003 1

Absorbance

)
[]
0.002 .. ’#
|
!
[}
1

0.001

Karoui et al.

3000 2500

2000 1600 1000

Wavenumber (cm'1)

Figure 2. Example of MIR spectra recorded on traditional soft cheese at the central (—) and external (+ * +) zones and stabilized soft

cheese at the central (— — —) and external (— ++ — <+ —) zones.

protein; and (iii) 1500—900 cm™!, the fingerprint region, in
which many chemical compounds absorb. In several research
studies, the normalized 3000—2800 cm™! spectral region has
been used as an indicator of the physical state of triglycerides. >
Major shifts in spectral profile determined by the application
of multivariate statistical analyses have been ascribed to
changes (crystallization) in the physical state of fat.®*" Using
16 semihard cheeses varying in their protein (20.2—24.1%), fat
(23.7—31.1%), and dry matter (50.2—57.9%) contents, one
group sampled on a number of occasions during the ripening
period, that is, after 1, 21, 51, and 81 days. To extract
information from the spectral data sets, PCA was applied to
the 1700—1500 cm ™! spectral region, and the sample scores
on PCs 1 and 2 showed some incomplete separation of
cheeses on the basis of their ripening time. In addition, the
protein network characteristics of the ripened cheeses were
found to be related to the initial composition of young (1
day old) cheeses. The best discrimination of cheese ripening
time was obtained by these authors by applying CCA to data
sets containing combined FT-IR and fluorescence spectra for
these cheese samples. Additionally, they reported that the
molecular changes that occurred in the secondary and tertiary
molecular structures of major cheese components could be
identified and monitored over time by CCA analysis of (i)
the 1700—1500 cm™!' MIR spectral region plus tryptophan
fluorescence spectra; and (ii) the 3000—2800 cm ™! spectral
region and vitamin A spectra.®>’® The authors suggested that
FT-MIR and fluorescence spectroscopies provided a common
description of cheese samples throughout ripening, allowing
their potential use as tools for providing useful information
related to protein structure in cheese.

In a similar approach, Martin-del-Campo et al.”' used FT-
MIR to monitor the ripening process of soft cheeses, in this
case, Camembert. Samples of cheese were taken from two
sites (the core and just under the rind) at different aging times
(i.e., after 10, 13, 15, 17, 20, and 27 days) and scanned using
FT-MIR. No changes were observed in the case of core
samples, although those collected from under the rind did
show some spectral modification throughout the ripening
period studied. These authors attributed bands located around

1096 cm ™! to secondary alcohol v C—O and 6 O—H, while
a band located around 1082 cm™' was ascribed to 0 O—H;
an absorption at 1045 cm™! was attributed to primary alcohol
v C—0, which was associated with the lactose grouping, in
agreement with the findings of Grappin et al.” and Lanher.”
Martin-del-Campo et al.”! observed two intense peaks
corresponding to amide I absorption around 1640 cm™! (v
C=0, v C—N) and amide II at 1550 cm™! (6 N—H and v
C—N). Significant changes were recorded for both amide
bands in the case of the under-rind cheese samples, while
only amide II showed significant changes in the case of core
samples. Changes in both the intensity and the position of
amide I bands were ascribed to the modification that occurred
in casein secondary structure, protein aggregation, and
protein—water interactions, corroborating investigations of
others.®’#~7® Regardless of the sampling zone, absorptions
in the 3000—2800 cm ' region were characteristic of
methylene (around 2920 and 2851 cm™') and methyl bands
(2954 and 2871 cm™").

FT-MIR has been applied to determination of both the
quality and the geographic origin of different varieties of
ripened cheeses. With regard to soft cheeses, Karoui et al.”’
reported that the ratio of v, CH,/v,; CH; absorbance bands
was higher for (i) stabilized cheese samples than for
traditional cheese samples, and (ii) for the central zone of a
cheese when compared to an outer zone irrespective of
cheese variety (Figure 2). This difference in the v,; CHy/v,
CHj; ratio has been ascribed to a difference in the inoculated
bacterial strain used for each cheese variety as reported by
Lanciotti et al.”® Determination of the geographic origin of
Emmental cheeses produced in different European countries
was also investigated by FT-MIR. Best results were obtained
using the 1500—900 cm™! spectral region in combination
with vitamin A spectra recorded on cheeses produced during
winter and summer periods, respectively. For Emmental
cheeses produced during summer, correct classification rates
of 83.7% and 77% were obtained for the calibration and
validation data sets, respectively, suggesting the potential of
this spectral region as a valuable tool for the determination
of the geographical origin of cheeses.” This result was
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confirmed on cheeses produced during the winter period, with
correct classification rates of 96.7% for both the calibration
and the validation spectra when considering the 1500—900
cm ! spectral region.®’ These findings were later confirmed
by Karoui et al.382 who reported that FT-MIR provided
relevant information for confirmation of the geographical
origin of experimental Jura hard cheeses and Swiss Gruyere
and I’Etivaz PDO cheeses. The potential of FT-MIR and
fluorescence spectroscopies to determine the geographic
origin of cheeses independently of their production times
(winter or summer) was determined by concatenating spectra
obtained from the two techniques on a sample basis; correct
classification percentages of 89% and 77% were obtained
for calibration and validation spectra, respectively.®® The
relatively low correct classification percentages were at-
tributed to a significant effect of the production season on
the characteristics of the cheeses studied.

Using a different approach, the potential of FT-MIR to
predict some chemical parameters in dairy products has been
investigated by many research groups. For example, the
predictive ability of FT-MIR in determination of the casein
content of cow’s milk was investigated by Sgrensen et al.'
By applying PLS regression to FT-MIR spectra and casein
content determined by reference methods, standard errors
of prediction (SEP) of 0.033% and 0.89% for casein
concentrations in the range of 2.1—4% and 70.7—81% were
reported, respectively. Recently, Etzion et al.%* successfully
predicted protein concentration in 26 milk standards produced
on a laboratory scale in which such concentration varied from
2.27% to 3.90%. However, in their study, these authors®
observed (i) a significant interference when a water subtrac-
tion procedure was applied; this interference was considered
as the primary obstacle to the accurate determination of
protein content; and (ii) milk spectra were influenced by other
constituents (e.g., fat and lactose), which formed a buffer
layer between the ATR crystal and the protein. Nutritional
parameters (i.e., fat, protein, carbohydrate, calories, calcium)
of 83 commercially bottled Spanish milks covering the entire
range of available brand names and types of milk were
successfully determined by FT-MIR.% The prediction of
nutritional parameters®®® in yogurt was confirmed separately
by the same research group.

In cheese products, Martin-del-Campo et al.” utilized FT-
MIR to determine pH, acid-soluble nitrogen, nonprotein
nitrogen, ammonia (NH,%), lactose, and lactic acid at
different ripening times by the application of PLS regression.
With the exception of pH, good prediction (Table 1) of all
of the parameters studied was reported; difficulty in predic-
tion of pH was also encountered by Karoui et al.®® who stated
that FT-MIR could be used only for differentiating between
cheeses with low and high pH values. Karoui and co-workers
were unable to accurately predict total nitrogen in Emmental
cheeses produced during summer and winter periods,’%
although they were able to accurately quantify water-soluble
nitrogen. In a comparison of FT-MIR and NIR in this
application, Karoui and co-workers® 2 suggested the use
of FT-MIR for the determination of water-soluble nitrogen
and NIR for the prediction of both fat and total nitrogen.
The combination of both NIR and FT-MIR spectra did not
improve the results obtained on this data set.’!

Organoleptic quality of cheeses, the most important
attribute for the consumer, can be measured directly by
sensory analyses. However, while the use of a trained sensory
panel is the most effective method for assessing cheese
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quality characteristics, it is time-consuming, expensive, and
not suitable for practical use when many samples need to
be analyzed online or at-line in the food industry. In this
context, FT-MIR was suggested as a rapid tool for screening
the instrumental texture and meltability attributes of process
cheese.”® Application of PLS regression in this study revealed
good prediction of, for example, meltability (R* = 0.9; root-
mean-square error of cross-validation (RMSECV), 7.4;
measured range, 13.2—82.5).

To extract information from FT-MIR spectra, all of the
studies described above for dairy products used descriptive
(PCA, CCA) or predictive techniques (FDA, PLS). In several
studies, FT-MIR was coupled with other spectroscopic
methods such as NIR and/or fluorescence spectroscopy and
reference methods (e.g., rheology and physicochemical
methods). To effectively utilize all of the information
contained in such data sets, the use of chemometric tools
allowing the simultaneous analysis of all data sets is required.
A recently developed strategy (CCSWA) has been applied
to simultaneously interrogate the physicochemical, FT-MIR,
and fluorescence data sets recorded on cheese samples
throughout ripening.’®#! Results obtained showed the ef-
fectiveness of CCSWA for monitoring modifications in
triglycerides and the protein network that take place during
ripening. Indeed, spectral characteristics of ripened cheeses
were found to be linked to the initial chemical composition
and to the protein network and fat structure determined in
the early stage of ripening. These results obtained were later
confirmed® following the application of CCSWA to the
tryptophan, vitamin A, and riboflavin spectra recorded on
15 soft cheeses produced by three different cheese making
procedures. According to the similarity map defined by the
common components 1 and 3, stabilized soft cheeses named
M3 were differentiated from traditional cheeses named M1
and M2. In addition, for a considered cheese, a good
discrimination according to the sampling zone (external and
central zones) was found. The authors®* reported that the
results obtained were not found with the PCA applied
separately to the tryptophan, vitamin A, and riboflavin,
suggesting that the CCSWA methodology allowed one to
use simultaneously all of the spectroscopic information given
by the three intrinsic probes in a very efficient way.

4.2. Meat and Meat Products

Spoilage in meat and meat products is a major potential
health hazard and the cause of significant economic loss to
the industry sector. Organoleptic characteristics associated
with spoilage can include changes in appearance (i.e.,
discoloration), the development of off-odors, slime formation,
or any other characteristic that makes the food undesirable
for human consumption.®” It is widely accepted that detect-
able organoleptic spoilage is a result of decomposition and
the formation of metabolites caused by the growth of
microorganisms. More than 50 methods (e.g., organoleptic,
microbiological, and physicochemical) have been used for
the detection of microbiologically spoiled or contaminated
meat products.” Because of the limitations of these methods
(e.g., they are time-consuming, labor-intensive, and require
highly trained panellists), Ellis et al.”® explored the potential
of FT-MIR for the measurement of biochemical changes
within a chicken or meat substrate so as to improve both
the accuracy and the speed of detection of microbial spoilage.
Their study involved comminuted chicken breasts, which
were left to spoil at room temperature for 24 h. FT-MIR
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measurements were collected at hourly intervals directly from
the meat surface using an ATR accessory with total viable
counts being measured by classical plating methods. PLS
regression was used to predict surface bacterial loads and
produced root-mean-square error (RMSE) values of 0.15,
0.23, and 0.27 log units for the calibration, cross-validation,
and independent test sample sets, respectively. These authors
reported that absorbance peaks in the 1500—700 cm™! region
were positively correlated with spoilage, although no single,
unique peak was obvious. Using a value of 107 bacteria*g !
as a threshold for fresh versus spoiled poultry meat, a genetic
programming approach was used to discriminate between
fresh and spoiled chicken and quantify the level of spoilage,
respectively. Using FT-MIR, these authors claimed to be able
to acquire a metabolic snapshot and quantify, noninvasively,
the microbial loads of food samples accurately and rapidly
in 60 s, directly from the sample surface. One of the main
conclusions of these studies was that FT-MIR could aid in
the Hazard Analysis Critical Control Point process for
assessment of the microbiological safety of food at the
production, processing, manufacturing, packaging, and stor-
age levels. Later, Ellis and coauthors”” explored the potential
of FT-MIR for the analysis of comminuted beef meat (rump
steak) contaminated at low spoilage levels; useful information
was again found in the 1500—700 cm ™! spectral region (i.e.,
1413—1405 and 1374—1104 cm™"). However, the models
developed in this application were not as accurate as that
used to predict bacterial spoilage in poultry®® by the same
authors. It was proposed that this was due to the spoilage
processes in beef being different from those in poultry;
additionally, and perhaps significantly however, the bacterial
contamination load in beef was significantly lower than that
observed in chicken and ranged from 5 x 10* to 4 x 107
cfu cm™ as compared to 2 x 10° to 2 x 10° cfu cm™2
(chicken). The genetic programming approach applied in this
beef study selected absorbances at wavenumbers in the region
1420—1400 cm™!, specifically a vibration at 1413 cm™! from
C—N attributable to amides; other vibrations selected were
from free amines (e.g., 1112 and 1374 cm™!). This was
interpreted by the authors as suggesting that the most
significant functional groups selected that can be correlated
to bacterial spoilage are those arising from amides and
amines; it was reported as likely that this arises from the
onset of proteolysis. In a similar approach, Ammor et al.?®
monitored the spoilage of minced beef stored in conventional
and active packaging at four different temperatures (i.e., 0,
5, 10, and 15 °C) until the spoilage was very pronounced
(i.e., 554 h, approximately 23 days). By applying PLS
regression to centered and standardized (1/standard deviation)
FT-MIR ATR spectra, the prediction accuracy for pH (R*> =
0.92; slope = 0.93; range = 5—6; offset = 0.39; RMSE =
0.12) and total variable counts (R> = 0.80; slope = 0.8; range
= 6.5—9.4 cfu/g; offset = 1.49; RMSE = 0.58) were found
to be excellent and approximate, respectively (Table 2). In
a second step, FDA based on three defined sensory groups
(fresh, semifresh, and spoiled) was applied to the FT-MIR
spectral data sets. The authors claimed 100% correct clas-
sification in the training sample set and 76.3% correct
classification when a cross-validation technique was used;
no information on the type of cross-validation was included
in the report. This level of difference may perhaps be
explained by the use of 39 principal components as an input
into the factorial discriminant approach. Nonetheless, no fresh
beef sample was classified as spoiled or vice versa. These

Karoui et al.

authors also reported successful (92.5% correct classification
with cross-validation) discrimination between the three types
of packaging in which the meat was stored, that is, air,
modified atmosphere, and active packaging.

Several research studies have been performed to assess
the potential of FT-MIR for authentication of meat samples.
In a study conducted by Al Jowder et al.,”® differentiation
between raw minced chicken, pork, and turkey meats was
reported following the use of PCA. Additionally, for each
meat species, discrimination between fresh and frozen-then-
thawed raw meat was reported, a finding later confirmed in
a feasibility study by Rannou and Downey'® who stated that
better classification of meat samples was obtained with
vis—NIR than with FT-MIR (91.9% and 86.5% of overall
correct classification was obtained from the two methods,
respectively). Interestingly, when combined vis—NIR—MIR
spectra were analyzed together, an improved, overall correct
classification rate of 94.6% was achieved.'” In a larger study,
Downey et al.!”! attempted discrimination between minced
chicken, turkey, pork, beef, and lamb based on MIR and
vis—NIR data using a series of chemometric tools, FDA,
SIMCA, k-nearest neighbors (KNN), and PLS regression.
Using the five meat types, correct classification values of
94.8% (FDA), 83.5% (KNN), 85.1—93.9% (SIMCA), and
98.7—88.3% (PLS) were obtained, respectively. As for the
feasibility study, the main classification problem encountered
in this study was the separation of chicken and turkey meat
samples. Al Jowder et al.'>!% Jater succeeded in differentiat-
ing between muscle and offal tissue types (i.e., liver, kidney)
and in detecting adulteration of raw and cooked beef
containing 20% adulterants (i.e., heart, tripe, kidney, and
liver). In fact, a cross-validated correct classification rate of
approximately 97% was obtained by use of the 1895—990
cm~! spectral region; no explanation for the use of this
particular spectral region was given by the authors. Moreover,
the authors used a relatively high number of PLS loadings
(n = 15) in their models, which carries with it the danger of
apparently increasing correct classification rates through
model overfitting, that is, the fitting of the model to noise.
Recently, differentiation between carcasses of suckling lambs
according to their rearing systems (i.e., reared on ewes’ milk
or milk replacer) was described by Osorio et al.'** following
the use of discriminant-PLS regression on MIR spectra
(4000—750 cm™!). Complete (100%) correct classification
was reported for perirenal and omental samples on the basis
of the rearing system (Table 2).

McElhinney et al.' executed a feasibility study on the
use of MIR and vis—NIR spectroscopy for the quantification
of lamb in minced lamb-in-beef mixtures. Using 32 minced
beef, 33 minced lamb, and 5%, 10%, and 20% lamb-in-beef
samples (33 of each), PLS models were developed using the
MIR fingerprint range (2000—800 cm™!) for samples, which
included the entire sample set or excluded the 100% lamb
material. SEP for these sample sets were 10.6% and 4.3%,
respectively; high numbers of PLS loadings were necessary
for these models, 16 and 10, respectively.

Reported studies on the use of FT-MIR as a method for
determining chemical parameters in meat products are
limited. Qiao et al.'® assessed the potential of three
spectroscopic methods (i.e., Raman, NIR, and FT-MIR) to
predict amino-acid contents in animal meals. Best results
were obtained using fingerprint FT-MIR (2000—650 cm™!
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spectral range), although preparation for MIR analysis was
more time-consuming than NIR due to the grinding step
required.

Some proteolytic enzymes from plants and animals have
been utilized as meat tenderizers in either home cooking or
industrial treatment. In this context, research studies using
FT-MIR have been performed to detect the presence of
hexanal and methyl sulfide in thermally processed products
and to monitor the oxidation process of meals stored in
modified atmosphere packaging.!?” Results obtained showed
the ability of FT-MIR to detect lipid oxidation and the
formation of sulfur compounds at an early stage (e.g., during
the first 6 weeks of storage). However, no physicochemical
validation with traditional methods (e.g., peroxide values)
was performed by the authors; this shortcoming was also
present in a paper of Lizuka and Aishima,'® which reported
a clear differentiation between reference beef and beef treated
with pineapple juice.

4.3. Fish

Research studies involving the use of FT-MIR for char-
acterization of the quality of fish and fish products are
limited, although the first publication appeared in 1989.1%
A protocol for the conversion of fish tissue into a milk-like
emulsion for analysis by the Multispec MK I infrared milk
analyzer was developed, and the results obtained showed that
transmission infrared spectroscopy could be used for fish
quality control purposes. However, the application required
a relatively long experimental time due to the procedure
required for preparation of the sample emulsion. To address
this problem, Pink et al.''” used FT-MIR with an ATR cell
together with FT-NIR (in transmission mode) for studying
frozen, minced hake samples. PLS regression applied
separately to both spectral data sets for the prediction of
dimethylamine revealed that (i) the 1600—890 cm™! range
for FT-MIR and (ii) the 1530—1866 nm range for FT-NIR
were the spectral regions of choice for best predictions. An
R? value of 0.96 and standard error of performance of 4.36
were observed following the use of FT-MIR (Table 3). More
recently, Bocker et al.!'! applied FT-MIR microscopy and
reported that the amide I spectral region was sensitive to
changes occurring during brine salting of Atlantic salmon,
confirming previous findings reporting that this technique
could distinguish between salted and unsalted farmed
salmon.!'!? Indeed, significant changes in the 3600 and 3200
cm ! region of MIR spectra of unsalted and salted salmon
fillets after different storage times (days) and under oxidative
conditions have been observed. No change was apparent in
the shape of the spectra of unsalted fish fillet until 17 days
storage had elapsed, while salted fish showed changes after
2 days storage. These changes in the shape of spectra have
been ascribed to the appearance of newly formed compo-
nents; broadening of the absorption band at 3470 cm ™! and
a reduced frequency value for bands at 3012 and 1746 cm™!
have been related to the formation of hydroperoxides during
oxidation of fish lipids. Given that such hydroperoxides are
more reactive and unstable than those produced following
the oxidation of edible vegetable oils, they evolve more
quickly to produce secondary products. FT-MIR was also
advanced as a possible tool for determination of fish
freshness.!'® By applying FDA to normalized spectral data,
correct classification rates of samples (fresh and frozen—
thawed fish) of 75% and 87.5% for validation sample sets
were reported using a model that included information from

Table 3. Application of MIR Spectroscopy to Fish Products”

wavenumber

measurement

reference

Pink et al.''”

error/% correct classification

RZ
0.96

measured range
1—83 mg/100 g of fish

range
4000—800 cm™!

mode

data pretreatment

parameter

standard error of performance = 4.4

reflectance

path length correction based on the

prediction of dimethylamine

area measurements and mean

centering
normalization

Karoui et al.'"?

1500—900 cm™': 75% for validation

n.a.

n.a

3000—900 cm™!

reflectance

differentiation between fresh

and frozen fish

data set
1700—1500 cm™": 37.5% for

validation data set
3000—2800 cm™": 87.5% for

validation data set
concatenation of the three spectral

regions: 87.5% for validation data

set

“n.a.: not applicable. R?: squared correlation coefficient.

Karoui et al.
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Figure 3. Representative olive oil ATR spectra.

the 1500—900 and 3000—2800 cm ™" spectral regions.!!* Only
37.5% correct classification was obtained using the 1700—1500
cm ! region. However, these results were not obtained using
intact fish samples; spectra were acquired from juice
exudates, diluted 1:1 in ultrapure water.

4.4. Edible Oils

Olive oil is probably the most popular vegetable oil
consumed as a food. Olive oils are classified into a specific
number of legally defined categories according to the method
of their extraction and, therefore, purity. Categories vary from
extra-virgin olive oil (EVOO) to lampante with the latter
not being used for human consumption. EVOO represents
the highest quality and most expensive oil, which is much
sought after by consumers. Therefore, EVOO is often the
subject of economic fraud through blending with cheaper
oils or oil grades. Such a practice represents a commercial
fraud but may also have potential health implications
depending on the adulterant oil.''* The most common
adulterants found in EVOO are refined olive oil, residue oil,
synthetic olive oil, and nut oil.'">~!!® In this context, FT-
MIR and Raman spectroscopies have been investigated'!
to assess their potential for (i) discriminating between seven
different groups of oils, that is, EVOO, refined olive oil,
sunflower oil, rapeseed oil, soybean oil, peanut oil, and corn
oil; and (ii) differentiating EVOO samples from those
adulterated with certain seed oils at different levels varying
from 5% to 45% v/v. Correct classification rates for a
validation sample collection of 100% and 93.1% were
obtained with FT-MIR and Raman spectroscopies, respec-
tively. The results obtained above by different authors
confirmed the findings of other investigations reporting the
ability of FT-MIR to discriminate between (i) EVOO and
EVOO adulterated with sunflower 0il'* or with a corn—
sunflower oil binary mixture;'?! (ii) EVOO and EVOO
adulterated with hazelnut oil present at a concentration
>8%;'"'® and (iii) pure camellia oil adulterated with soybean
oil in the 5.5—22.4% range.'?> Most of the valuable informa-
tion contained in the FT-MIR spectra was found in the

2.304936+03cm-1

1500—900 cm™! (the fingerprint region) and was tentatively
ascribed to C—H bending and deformation in fatty acids.
Representative spectra of oils are shown in Figure 3
(unpublished results).

Bombarda et al.!** succeeded in determining the geo-
graphic origin and composition of the essential oil lavandin
(var. Grosso) by FT-MIR and gas chromatography using a
flame ionization detector; the two techniques gave similar
results, suggesting that FT-MIR could be used as a potential
tool for authentication of this and other essential oils. In an
earlier report, Caetano et al.'** applied classification and
regression trees (CART) and support vector machines (SVM)
in an attempt to classify olive oils on the basis of their
geographic origin, that is, Italian versus non-Italian and
Ligurian versus non-Ligurian. CART was chosen because
of its simplicity, while the SVM approach allowed for the
mapping of complex, nonlinear relationships. In the dis-
crimination of Italian versus non-Italian oils, both approaches
produced models with relatively high sensitivity but low
selectivity; this means that the probability of accepting a non-
Italian oil as Italian was considerable. In the discrimination
of Ligurian oils, the opposite behavior was obtained, meaning
that the probability of wrongly classifying a Ligurian oil was
high. The investigation of Sinelli et al.'® allowed differentia-
tion of fresh from aged edible oils and was recently supported
by Le Dréau et al.'?® who observed differences between fresh,
aged, and heated oils from six different vegetable sources.
In addition, good correlation between analytical parameters
describing oil deterioration arising from both heating time
and changes in the 1500—900 cm™! spectral region was
highlighted by Moros et al.'?’

Fats used in food product formulations induce some
physicochemical, rheological, and sensory changes in the
finished products. In this context, Bellorini et al.!? assessed
the abilities of various analytical methods for differentiating
between the nature of fats utilized in food products; specif-
ically, these authors targeted the identification of tallow
(ruminant fat) and its differentiation from nonruminant fats.
Four different techniques were compared in terms of their
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suitability for enforcing existing and emerging legislation
on animal byproducts (i.e., FT-MIR, gas chromatography
coupled with mass spectrometry, immunoassays, and poly-
merase chain reaction methods). Samples of different,
individual fats and oils as well as mixtures of the fats were
studied using this range of analytical methods. Results
obtained showed that FT-MIR and GC—MS differentiated
between pure fat samples quite well but showed only limited
ability to identify the animal species or even the animal class
to which fat(s) belonged. The other two techniques (immu-
noassays and polymerase chain reaction) were able to identify
the origin species of the fats; they were also the only
techniques able to identify low concentrations of tallow in a
mixture of fats prepared by the rendering industry.'?® This
was the case even when the samples were sterilized at
temperatures above 133 °C. One of the main conclusions of
this study was that, while the combination of FT-MIR and
multivariate data analysis techniques permitted the clas-
sification of pure lipid samples according to their origin
(ruminant vs nonruminant), they proved not to be suitable
for detecting a specific fat, tallow, at concentrations of less
than 10% in a mixture of fats.

FT-MIR in transmission mode has been used for the
quantification of peroxide values of vegetable oils, and the
results obtained showed that reproducibility of the FT-MIR
was better than that of the traditional technique (determined
by the American Oil Chemists’ Society iodometric
method).'” These results were later confirmed by Guillen
and Cabo'’ reporting that FT-MIR could be used for the
determination of oxidative stability and antioxidant activity
of different edible oils, which were submitted to oxidation
in a convection oven with air circulating at 70 °C. In another
approach, Van de Voort et al."*! succeeded in determining
the level of peroxide values of edible fats and oils by FT-
MIR transmission spectroscopy. A PLS calibration model
for the prediction of peroxide value was developed using
data in the spectral range 3750—3150 cm™'. Validation of
the method was carried out by comparing the PLS-predicted
peroxide values of a series of vegetable oils to values
obtained by the American Oil Chemists’ Society iodometric
method. Reproducibility of the FTIR method [coefficient of
variation (CV) = 5%)] was found to be better than that of
the chemical method (CV = 9%), although its accuracy was
limited by the reproducibility of the latter. This capability
was later discussed by Guillén and Cabo'** who reviewed
the capability of FT-MIR to characterize edible oils and fats.
Included in that review were determination of the degree of
unsaturation or iodine value, trans-double bond content,
average chain length or saponification number, solid fat
content, peroxide and anisidine values, and free fatty acid
quantification. Regarding the latter, Inén et al.'*? reported
an R? value of 0.99 and an RMSECV equal to 0.036 in the
estimation of free fatty acids in commercial olive oils over
a range of 0.23—6.39% (w/w) (Table 4). These authors
investigated a wide selection of mathematical approaches for
choosing the calibration sample set, attenuation of the spectral
range, preprocessing methods (mean centering, multiplicative
scatter correction, standard normal variate), and PLS regres-
sion. However, the number of samples analyzed was small:
a calibration and validation set of 16 and 28 samples,
respectively.

Karoui et al.

4.5. Cereals and Cereal Products

The formation of a flour:water dough represents a key
technological step in the production of bread and other baked
goods. Many complex interactions occur during this process,
which induce changes in structure at both the molecular and
the macroscopic levels. Dough must be mixed for a specific
time and using particular energy inputs to ensure optimal
volume and texture in any subsequent baked product. In this
context, FT-MIR has been studied by several groups to
monitor changes occurring in bread dough.'** '3 One
study'®® aimed to evaluate the correlation between FT-MIR
and FT-NIR spectroscopy to give a better understanding of
the spectral modifications recorded during bread dough
mixing using a 2D cross-correlation (2D CORR) method.
While the specific focus of this study was on the NIR region,
the authors reported the involvement of MIR bands centered
at 3300 (O—H), 1650 (amide I), 1546 (amide II), 1245
(amide III), and 980 cm' (C—H) in dough structure
development. ATR-FTIR was used!*® in a study of changes
in protein secondary structure in high water absorption
systems (90%) used in gluten—starch separation processes.
Success in the monitoring of relative structural changes in
protein secondary structures was reported, and it was noted
that formation of [3-sheet structures at the expense of all
others took place during mixing. A similar sampling approach
was used in an investigation of factors responsible for dough
stickiness.'?” Infrared spectra indicated that fat and gluten
appear to be located on the surface of sticky dough rather
than water or starch. Significant differences in amide I and
amide II band intensities were noted for kneaded and
stretched gluten in comparison to untreated, wet gluten. In
agreement with the previous report, these authors concluded
that a major decrease in a-helix and increase in fS3-sheet
structures was apparent as a result of kneading and stretching
of dough. Sinelli et al.'*® reported the application of NIR
and MIR spectroscopy to the study of dough proofing, the
resting period after mixing during which fermentation
commences. Strong baker’s flour, retail flour, and gluten-
free flour formulations were investigated over a 1 h period
in each case; the aim was to investigate macromolecular
changes occurring during this phase of bread production and
to determine optimum proofing times based on objective
spectral measurements. Changes with time were studied by
plotting PC1 and PC2 scores for each flour type against time
(Figure 4); reproducible and different curves were obtained
for each flour type. On the basis of these studies, the authors
concluded that FT-IR spectroscopy revealed information
about the relative importance of protein and starch moieties
during proofing, although a note of caution was sounded
regarding the representativity of the ATR sample which was
actually measured, that is, a surface measurement essentially.

Midinfrared spectroscopy has also been applied to the
classification of modified starches according to the type
of chemical modification involved.'*® These authors de-
ployed a large array of chemometric procedures including
LDA, quadratic discriminant analysis (QDA), kNN, SIMCA,
PLS-DA, ANN, and SVM to identify a range of chemically
modified starches. Two hundred and thirty two (232) starch
samples of four different classes were studied: the class
“native” consisted of 38 samples, the class “E1412” consisted
of 25 samples, the class “E1422” consisted of 57 samples,
and the class “E1422” consisted of 112 samples. Results
demonstrated that the various discrimination methods were
effective tools for the classification of starches according to



Chemical Reviews, 2010, Vol. 110, No. 10 6157

Mid-Infrared Spectroscopy Coupled with Chemometrics

“JUSIOLJS00 UONR[SLI0D parenbs : 3y "UONEPIEA-SSOID JO I01I9 dxenbs uesw 1001 : ADHSINY ‘dlqeordde jou :eu,

QJeLIBA [RWLIOU DIEPUE)S

+ W1 9/6] PUB 06 Us9MIaq
JourqIosqe 95eIoAR o) Jo enoads

uonenuaduod

cer [B 19 UoU] 9¢0'0 = ADASINY 660 (M/M) %6E9—ETO WD SE9—000F  oULQIOSqe Palajuad e Woly uonaenqns proe Aney va1y jo uonorpaxd
(01 = swrod
Suryloows Jo Ioquinu ‘poyjour S[I0 Po3s pue Imopuns jo
L2118 19 SOION ui 991 = ADASINY 86°0 unw Og61—0  _Wo 00S—000F  ourdPI  KB[0D—AYZIARS) QANBALIOP PUODSS  UOHBWNSY dInjerodwd) Suneay
(01 = swrod
Suryoows Jo Ioquinu ‘poyjour S[I0 P3s pue Imopuns
(o1 8 19 SOION Do 61 = ADHSINY S¢S0 Do 681—LPl WD 00S—000F  AdUBIRPAI  AB[OD—AYZIALS) QADEBALIOP PUOIAS Jo uonewnse own Juneay
WS
oy ur 1eak | pue Iep oy
ur s1eok g Iep ) ur reok
[ SuLmnp paIo}s 10 ‘S[I0 YsoIj
J10J pPaurelqo uonedyISSe[d
1991100 PAJEPI[A JO ssouysay
i TR W IPBUIS %001 PUB ‘%T6 “%SL ‘%001 eu ®U WO )GG—000F  QouIddAI QUOU  [IO QAI[O UISIIA JO UONEN[BAD
QATIBALIOP
SLLION + SULI9IUQD ueow S[I0 BI[[oWED
+ SuI[eds ooUBLIBA  Q)BLIBA Ul UONRIdNPE 10 UBIqAOS
221’18 10 Suepy G680 = ADASINY 660 (A/N) %Y CC—S'S  |_Wd (0S9—(000F  ourIOdpaI [BWLIOU PIEPUB)S :9ANRALIOP IsIy  Surdjnuenb pue Suneurwriosp
Kroanoadsar ‘z¢ 1
PUB ‘¥ ‘p0'T JO SJAS WM [0
[10 QAT[O UT S[10 padsader QAI[O UI ‘s[I0 paasader pue
pue paasu0))0d AINIXTW ‘Poasu01I00 ‘AInIXTW AIeurq
121 T8 19 ZIuapingy AIeulq JoMOpuns—uiod 86°0—€6°0 (A/A) %0T—C  {_W2 0S9—000F  dourIddPaI POIoIUdD UBAW  JOMOPUNS—UIOD JO UONINIP
[10 9AT[O s[to
UONEPI[BA SSOIO JO /110 9[qeIagoa JOMOPUNS YIIM PAJeIA)[Npe
oz’ T8 19 Ael, Y 10} £6°0 JOTW QOI—0T  ;_Wd 008—000F  2ourIdpAI Juou S[10 QAI[O JO UOIEINUAYINE
UoneIdANPE JO UONINIP
%001 UONJALI0d  pue UISLIO [BIIULIOQ JUIJJIP
61118 10 01USLIRIA JO 9Bl UONLOYISSL]O 10100 eu (M/M) %SH—G [ _WD 009—000E  oUBIOIPAI QuI[aseq pue UONERZI[PWIOU  JO S[I0 9[QIPd JO AJdnuayine
A1oAanoadsar ‘ooueidapjar
PpUB 9ATJBALIOP 1SIY 0) puodsoriod
¥ pue [ (;_wd [8%[ e (/1 0
A1oAnoadsar ‘sio 1nujozey 1@) 2oueqIosqe /[(;_wo [9f] 1®
PUEB AI[O I0J UOBIYISSB[O (/1 80[ 1) 2ourqIOSqR — (;_WD [10 JnU[oZRY pUE [IO
o1 T8 12 udIRRyg 1991109 JO %¥'$6 PUB %S 06 eu U _wd )06—000F  d0uROSPT Qe[ 18 (Y/1 SO [(@)] S0URQIOSqR  SAI[0 USIMIS] UONRNUIIJIIP
QoudIRJal uoneOyISSe[d A 93ues painseow J3uer pouwr juouneanaid eyep 10)owered
1991109 JO 94/10119 JoquINUIABM JUSWIAINSBAW

,S1npoad 10 03 £dodsondddg YA Jo uonednddy - d[qe],



6158 Chemical Reviews, 2010, Vol. 110, No. 10

Karoui et al.

(a) 04

0.3

PC1
=)
r o

—e— strong
—s—refall

] £l

(b) 0250

40 50 60 70

Time {min}

0.200 4
0.150 -
0.100 -
o 0050 1
o
& 0,000
-0.050 -
-0.100 |

-0.150 7
L

-0.200

—e—strong bakery flour——

—a—retail

—a—gluten free

0 10 20

30

40 50 60 70

Time (min}

Figure 4. Principal components 1 (a) and 2 (b) scores versus time for strong bakers’, retail, and gluten-free flour during proofing (Sinelli

et al.'?®).

their chemical modification. Best results were obtained using
the SVM technique. Another study of carboxymethylated
nonstarch polysaccharides was reported by Yuen et al.'*
These authors compared Raman and FT-IR spectroscopy for
predicting the degree of substitution in cellulose, guar, locust
bean, and xanthan gums. IR marker bands at 1315 and 1605
cm ! were identified, and predictive models with high
correlation (r > 0.96) between the spectroscopic and wet
chemistry data were reported. No prediction error values
were, however, included in that paper.

FT-IR spectroscopy has been used in investigations of the
rubbery and glassy states of starch,'*! retrogradation of
natural cross-linked starch,'*? gelatinized and retrograded
wheat starch,'*® gelatinization changes in rice starch as a
function of pressure and temperature,'** temperature effects
on sorghum starch,'* and retrogradation of potato starch.!*
Reports have also been published on the differentiation of
cheese sauces according to starch type,'*’ cassava starch
edible film properties,'*® sweet potato starch hydrolysis,'*
starch granule organization in wheat, potato, maize, waxy
maize, and amylomaize,'*® and cell wall polysaccharides with
emphasis on arabinoxylans.'>!

Findings reported by Ferndndez Pierna et al.'* showed
that FT-MIR could be used for (i) monitoring changes in
protein secondary structure during batter mixing, (ii) dem-
onstrating that hydrated gluten is one of the major contribu-
tors to dough stickiness, and (iii) ascribing absorbances to
chemical changes taking place in bread dough development
during mixing. Additionally, FT-MIR has recently demon-
strated its ability to determine optimum dough mixing time
by focusing on changes occurring in the secondary structure

of gluten.'> Indeed, the ratio of 1336 cm /1242 c¢cm™!
absorbance bands, corresponding to o-helix and fS-sheet
conformations of protein, respectively, was found to be a
valuable indicator of optimum mixing time. Cocchi et al.*®
separated different flour samples that were submitted to
different technological treatments by FT-MIR, highlighting
the utility of the technique to the characterization of flour
matrices.

Regarding the ability of FT-MIR to predict chemical
parameters in cereals and cereal products, Kim et al.'>?
successfully determined the quantity of trans fatty acids (R?
= 0.92, SEP = 0.96; Table 5) present in ground cereal
products without an oil extraction step using PLS regression
of data collected in the 1500—900 cm™! spectral region.
These results confirmed previous findings reporting that FT-
MIR could be used for the quantification of ash and protein
in commercial wheat flour'™* (Table 5) and protein in rice
samples treated with different amounts of radiation doses,
that is, varying from 250 to 3000 Gray (Gy).!"*> However,
NIR was found to be the better technique for prediction of
amylose content in wheat flour.'>

Classification of cereal flours on the basis of MIR spectra
of puffed products has been reported by one group.'>® Six
pure flours from wheat, oats, and buckwheat were subjected
to different technological treatments (dehulling, toasting, and
puffing), and 10 binary mixtures were produced by blending
the wheat flour with each of the others in varying proportions.
Spectra were collected in transmission (KBr discs). Following
the application of wavelet pretreatment, PCA revealed
clustering of the flours types into separate groups, although
no discriminant models were developed in this study. In
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another study of extruded cereal products, Cremer and
Kaletunc'> investigated the spatial distribution of starch,
protein, and lipid in corn and oat flour-based material using
FT-IR microspectroscopy. Results revealed an even starch
distribution as a continuous phase in cereal-based extrudates,
while protein was located in small, discrete regions. Lipids
in oat flour extrudates were less evenly distributed than starch
but more so than protein.

One study has been reported,'®® which described the use
of FT-IR spectroscopy for studying protein structure in
legumes (Phaseolus wvulgaris L. and Lens culinaris L.).
Attention was paid to the amide I absorption band in whole
seed flours before and after dry heating and autoclaving. Dry
heating was reported not to appreciably affect secondary
protein structure in lentil while causing a reduction in
[-sheets, an increase in aggregates, and the appearance of
random coil structures in common bean flour. Overall, heat-
induced complexes of legume proteins have a high stability
because of the high content of 3-sheet structures, which may
affect protein utilization from flours thus treated.

4.6. Sugar and Honey

FT-MIR has been utilized as a rapid tool for the deter-
mination of both the geographical and the botanical origins
of honey. Tewari and Irudayaraj'>® analyzed honey from
seven floral sources and obtained 100% correct classification
using both FT-MIR and electronic-nose data. Results ob-
tained were confirmed by Ruoff et al.>® who studied 422
honey samples (11 unifloral and 411 polyfloral) originating
from different European countries, that is, Switzerland,
Germany, Italy, Spain, France, and Denmark. Ruoff et al.®
and Karoui et al.'*® reported good discrimination of honey
samples according to floral origin: percentage of correct
classification for the validation data sets varied in the range
of 71—100% (Table 6). This finding was recently confirmed
by Bertelli et al.’° (2007) on Italian honey samples: 100%
and 93% of samples in the calibration and validation data
sets, respectively, were correctly classified.

Routine analysis of sugar cane juice samples for sugar
content is performed by polarimetric or refractometric
methods. Recently, FT-MIR was used to determine glucose,
fructose, and sucrose amounts in aqueous mixture solu-
tions.'®! These authors prepared aqueous mixtures containing
10%, 20%, and 40% w/v total sugars with different combi-
nations of glucose, fructose, and sucrose. By applying PLS
regression to FT-MIR reflectance spectra, excellent predic-
tions were found with R? values >0.99 (standard error of
calibration varied between 0.33—0.38, 0.26—0.32, and
0.36—0.38 for glucose, fructose, and sucrose, respectively,
Table 6), confirming recent and earlier findings of Ruoff et
al.,'> Maalouly et al.,'s* and Cadet and Offmann.'** Inves-
tigations of these latter authors reported that FT-MIR was
more convenient than HPLC. In another study, FT-MIR was
deployed to measure physicochemical properties of honeys.'®
Good predictions of fructose, glucose, and sucrose in honey
samples (R? values of 0.88, 0.92, and 0.98 and standard
deviation values of 2.55%, 4.44%, and 3.61% (wW/v),
respectively) were reported by the authors (Table 6).!%

Hennessy et al.” reported success in the use of FT-MIR
spectroscopy for confirming claimed geographic origin in a
selection of honeys from Ireland (n = 25), Mexico (n =
25), Argentina (n = 25), Czech Republic (n = 50), and
Hungary (n = 25). This sample collection contained filtered
and nonfiltered material. Spectra were collected using an

Karoui et al.

ATR accessory and a germanium crystal (11 internal
reflections). First- and second-derivative and standard normal
variate (SNV) pretreatments were separately applied to the
spectral data, which were processed using PLS-DA, FDA,
and SIMCA. An overall correct classification rate of 93.3%
was obtained by PLS-DA, while FDA correctly identified
94.7% of honey samples. Correct classifications of up to
100% were achieved using SIMCA, but some classes had
very high associated false positive classification.?® While
these reported correct classification rates may not be high
enough for a definitive confirmation of geographic origin,
they suggest the possibility of deploying the technique as a
screening tool in such an application. In earlier work, Kelly
et al.'® described the use of FT-MIR ATR spectroscopy for
discrimination of Irish honey and such honey adulterated with
various sugar syrups. A total of 580 authentic Irish honeys
were studied together with a random selection of some of
these honeys adulterated by inverted beet syrup (n = 280),
high-fructose corn syrup (n = 160), partial invert cane syrup
(n = 120), inverted beet syrup (n = 280), dextrose syrup (n
= 160), and beet sucrose (n = 120). For each adulterant, a
range of concentrations was used from approximately 10%
to 70% w/w. On the basis of the spectra collected, the authors
reported discrimination between authentic honeys and honeys
in this sample set using a decision tree approach with levels
of accuracy that may have commercial value. Discrimination
between authentic honeys and those adulterated by high-
fructose corn syrup or inverted beet syrup met with low
success rates, and it was stated that FT-MIR spectroscopy
would be unlikely to be the method of choice for their
detection.

Adulteration detection of Irish honey samples by glucose—
fructose mixtures has been investigated by Kelly et al.>!
Samples studied were authentic honey (n = 320) and
adulterated honeys (n = 221); adulterants used were solutions
of both D-fructose and D-glucose in the weight ratios 0.7:
1.0, 1.2:1.0 (typical of honey composition), and 2.3:1.0. Each
adulterant solution was added to individual honeys at levels
of 7%, 14%, and 21% w/w. Examples of FT-IR spectra of
authentic Irish honeys and those adulterated with sugar
solutions are shown in Figure 5. Both PLS-DA and k-nearest
neighbors techniques were studied; best classification models
were obtained by PLS-DA on first derivative spectra with
overall correct classification rates of 93%; 99% of samples
adulterated at levels of 14% w/w or higher were correctly
identified. These results were claimed by the authors to reveal
the potential of this spectral technique for use as a screening
technique to detect this type of adulteration.

4.7. Fruit and Vegetables

As fruit is the most costly ingredient in jams, adulteration
with cheaper ingredients, such as sugar and vegetable matter,
may occur. To protect the consumer from adulteration and
avoid unfair competition, the use of MIR as a screening tool
was investigated by several groups. Diffuse reflectance and
ATR were used to differentiate between strawberry jam and
such jam containing nonstrawberry constituents; correct
classification rates of 100% and 91%, respectively, were
observed (Table 7).*” These findings were confirmed later
by Holland et al.'®” who analyzed 983 fruit purées, which
were prepared in the laboratory using fruit collected over 2
years (1993 and 1994); different adulterants such as apple,
plum, sugar solutions (glucose and sucrose), red grape juice,
and rhubarb compbte were mixed with the strawberry
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Figure 5. Mid-infrared ATR spectra of a random selection of (a)

authentic Irish honeys and (b) adulterated Irish honey with beet

sucrose (BS), partial invert cane syrup (PICS), inverted beet syrup

(IB), high fructose corn syrup (HFCS), and dextrose syrup (CS)

(Kelly et al.>h).

samples. Purées of strawberry only and others (pure non-
strawberry or adulterated strawberry) were used for the
establishment of a discriminant PLS model (on a test set
comprising 317 samples), and 94.3% correct classification
(strawberry or nonstrawberry) was obtained. The authors
tested the robustness of the model with fruits harvested in
1995, and 96.6% of samples were found to be correctly
classified. One of the main conclusions of this study was
that the model could be used for the analysis of fruit of
subsequent years; this hypothesis was advanced because 22
of 23 commercially produced fruit purées were correctly
classified. In another study involving apple juice, Kelly and
Downey!'®® used FT-MIR for the detection of single strength
apple juice adulterated by sugars, partially inverted cane
syrup (PICS), beet sucrose (BS), high fructose corn syrup
(HFCS), and synthetic solutions of fructose:glucose:sucrose
(FGS). The sample set comprised 224 authentic and 480
adulterated samples with adulterants being added to indi-
vidual juices at levels of 10%, 20%, 30%, and 40% w/w.
Best classification models achieved overall correct classifica-
tion rates of 96.5% (PICS), 93.9% (BS), 92.2% (HFCS), and
82.4% (FGS), respectively. In addition, PLS models were
reported able to predict adulterant content to within +10%
w/w approximately in the case of PICS, BS, and HFCS
adulterants; no success with quantification of FGS mixtures
was found. These results were confirmed recently by others

Karoui et al.

who succeeded in detecting both the type and the inclusion
percentage of adulterants (cane and beet sugar solutions) in
maple syrup,'® using 1800—800 and 3200—2800 cm™!
spectral ranges. Recently, FT-MIR was used to determine
the geographic origin of saffron samples from four different
countries [Greece (n = 40), Iran (n = 87), Italy (n = 60),
and Spain (n = 63)].'7° The authors used discriminant
analysis on the first 24 principal components obtained from
the spectral collection, and the best classification was found
(2000—700 cm ") with an overall correct classification rate
of 93.6%; Greek, Iranian, Italian, and Spanish saffron were
90%, 89.5%, 96.7%, and 98.4% correctly classified, respec-
tively (Table 7). These results agreed with those of Kim et
al.'”" who reported the ability of FT-MIR to discriminate
between strawberry samples of different geographical origins
(Japan and Korea) and cultivars (Table 7).

In another approach, Reid et al.'”> compared the ability
of FT-MIR and NIR to determine the effect of heat treatment
on the quality of apple juice samples produced from four
varieties, that is, Bramley, Elstar, Golden Delicious, and
Jonagold. Chemometric procedures applied were PLS1 (for
differentiation on the basis of heat-treatment), PLS2 (for
varietal differentiation), and LDA applied to PC scores. PLS1
produced correct classification rates of 77.2% for heat-
treatment by both NIR and MIR, and PLS2 gave correct
classification rates between 78.3—100% for MIR spectral
data. Although differentiation due to variety achieved higher
correct-classification rates than that for heat-treatment, the
authors stated that there was much scope for research into
the use of FT-MIR for separation of samples according to
the heat-treatment, particularly as this is an important food
safety issue. Using the same approach, FT-MIR was used
to determine changes in the chemical composition of carrot
cell walls during treatment with auxin, which causes
significant cell elongation.'” In situ FT-MIR was applied to
study the heat stability of proteins and properties of the glassy
matrix in slowly dried, desiccation-tolerant and rapidly dried,
desiccation-sensitive carrot somatic embryos. Slight but
significant differences were observed in the amide I spectral
region. Indeed, the amide I band of slowly dried embryos
was observed at ~1654 cm™!, while a shift to lower
wavenumbers (~1632 cm™!) was found in rapidly dried
carrots. Another preliminary study pointed out the usefulness
of FT-MIR for monitoring the fermentation process of
pineapple.'7*

FT-MIR has also demonstrated its ability to determine
nutritional parameters and antioxidant capacity of fruits and
vegetables.'”!7® Moros et al.'” analyzed 63 highly hetero-
geneous samples covering fruit juices and fruit juices with
added milk by FT-MIR and reference methods; promising
results were obtained. Considering the calibration data
collection of 40 samples, an R? value of 0.97 and an RMSEP
of 0.65% (w/v) were observed. These results were confirmed
recently by Bureau et al.'”” who analyzed 757 apricots
harvested at different maturation times and belonging to eight
different cultivars. The most suitable spectral region lay
between 1500 and 900 cm ™!, and excellent predictions were
observed for the following parameters in apricot slurries:
citric acid, malic acid, soluble solids content, and titratable
acidity. This confirmed previous findings of the same
research group which reported the usefulness of FT-MIR for
prediction of sucrose, glucose, fructose, malic, and citric acid
contents in apricot.'”® In another study, Lam et al.'”
determined with success the antioxidant capacity in three
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fruit varieties, that is, blueberry, grape, and blackberry.
External validation of the model developed using 16 samples
for prediction of oxygen radical absorbance capacity (varying
between 38.5 and 139.6) was successful with R? equal to
0.93 and a RPD of 5.09. FT-MIR was also used for the
determination of the degree of methyl esterification of papaya
pectins during three ripening stages.'® The methyl esterifi-
cation degree was determined on the basis of the intensities
at 1740 and 1630 cm™! (which are characteristic of carbonyl
groups of galacturonic acid and methyl ester, respectively)
using the following formula: [A 740/(A1740 + Ajgz0 cm™ D]
Results obtained were in agreement with those achieved
using an established method.

Some attempts have been made to determine a number
of parameters (i.e., carotenoids, sugars, and dry matter,
etc.) in carrot roots using both NIR and MIR methods.'8!-182
The prediction of dry matter and a- and -carotene with
the two techniques was successful, while the prediction
of sugars in carrot roots (fructose, glucose, sucrose) was
not satisfactory. Later, the same research group applied
ATR-IR spectroscopy (2000—850 cm™!) to develop precise
calibration models for the prediction of sugar content. The
results showed that, with the exception of sucrose,
determination of fructose, glucose, and total sugar to be
predicted with high accuracy.

4.8. Coffee

Coffee is one of the most popular beverages in the world.
It is comprised of many hundreds of components such as
metal ions, volatiles, chlorogenic acid, caffeine, fatty acids,
sterols, diterpenic alcohols, tocopherols, and triglycerides.
Kemsley et al.*® successfully discriminated between Arabica
and Robusta coffee beans by FT-MIR, reporting 100%
correct classification. However, the study was performed on
a limited number of samples (20 Arabica, 8 Robusta), and
the model needs to be tested on a larger number of bean
samples including other coffee varieties before universal
application may be recommended. Discrimination between
Robusta and Arabica in instant coffees was reported by the
same research group when 52 instant coffee samples, 29 pure
Arabica and 23 pure Robusta, were scanned by FT-MIR.*
Using spectra collected in diffuse reflectance, these research-
ers observed 100% correct classification; the authors®
attributed this discrimination to differences in the amount
of chlorogenic acid and caffeine in Arabica and Robusta
varieties. This assumption was later confirmed by Downey
et al.'® as illustrated in Table 8 who attributed absorption
bands located in the 1754—1550 and 1298—1149 cm™!
regions to caffeine and chlorogenic acid, respectively. These
results were confirmed recently by Wang et al.'® who
succeeded in differentiating between Kona and non-Kona
coffee mixtures. In another study, Briandet et al.'% assessed
the potential of FT-MIR to discriminate between pure freeze-
dried instant coffees and samples adulterated with glucose,
starch, or chicory in the range 2—10% (w/w). Using ANN,
100% correct classification for pure and adulterated coffees
was observed. The 1800—1680 cm™! carbonyl region (char-
acteristic of vinyl esters/lactones, esters, aldehydes, ketones,
and acids) was stated to provide information related to the
flavor of brewed coffee.'® The intensity and duration of heat
treatment of the green coffee beans largely contributed to
the basic taste and aroma of this product. The same research
group found differences in the FT-MIR spectra between
brewed Arabica and Robusta coffees. Regarding determina-

Table 8. Application of MIR Spectroscopy to Coffee Products”

error/% of correct
classification/assignment bands

measurement

reference

RZ

measured range

wavenumber range

4000—800 cm™!

mode

data pretreatment

parameter

Kemsley et al.*® and

100% of correct classification

n.a

n.a.

baseline correction at 1900 diffuse reflectance

discrimination between coffee

Briandet et al.*®
Downey et al.'$?

cm™~! + normalization

none

species

Wang et al.'$

0.85—0.99 SEP: 0.74—20% 100% of

n.a

4000—400 cm™!

first derivative second reflectance

Kona coffee authentication

correct classification of Kona
coffee mixture and non-Kona

coffee mixture

derivative mean centering

variance scaling

100% of correct classification ~ Briandet et al.'®

n.a

20—100 g/kg

4000—800 cm™!

diffuse reflectance

baseline correction at 1900

adulteration detection in

cm™! + normalization

or reflectance

instant coffee with glucose,

starch, or chicory
determination of caffeine

Singh et al.'¥’

sensitivity: 5 ppm

n.a

5—40 ppm

mentioned (deduced

3500—700 cm™! not
from the spectra)

was used transmission

band at 1655 cm™!

content in coffee

Karoui et al.

“n.a.: not applicable.




Mid-Infrared Spectroscopy Coupled with Chemometrics

tion of chemical components in coffee, quantitative prediction
of caffeine content with a sensitivity of less than 5 ppm was
found on the basis of an absorption band located around 1655
cm~ 1.8 This result corroborated previous findings of
Suchdnek et al.'®® who reported that green coffee could be
quantitatively analyzed by FT-MIR spectroscopy.

4.9. Identification of Bacteria in Different Food
Systems

The relative advantages of MIR as an alternative to
traditional methods for the identification and differentiation
of bacteria were assessed in the 1950s as stated by Nelson
et al.'®® Unfortunately, due to the poor performance of
dispersive spectrometers at that time, the aforementioned
studies did not permit accurate bacterial identification.
Hardware developments in interferometers and advances in
multivariate data analysis tools reawakened interest in
utilizing FT-MIR for microbiological analysis. Studies
conducted by Amiel et al.'">!°! on the identification of lactic
acid bacteria in dairy products allowed discrimination of
bacteria at the species level, although only a limited number
of strains were investigated. These results corroborated earlier
findings of Fehrmann et al.'”> To compare the results obtained
by FT-MIR and traditional methods, Amiel et al.'”® analyzed
48 wild isolates of lactic acid bacteria, which were inde-
pendently identified by biochemical tests and RAPD meth-
ods. By applying FDA to the spectral data sets, 100% and
69% correct classification rates were obtained at the genus
and species levels, respectively, suggesting that the technique
had limited capabilities, especially at the species levels (Table
9). Later, the same research group'®' explored the use of FT-
MIR for taxonomical purposes, and their results partially
confirmed those of Dellaglio et al.!”* One of the most
important conclusions of these studies was that the informa-
tion contained in FT-MIR spectra could be complementary
to genomic information and consequently could be introduced
in a polyphasic taxonomic approach. This assumption was
confirmed by Lucia et al.'” who observed changes in the
secondary structure of proteins (1700—1500 cm™! related to
amide I and II absorbances) of both curds and cheeses
inoculated with different strains of Yarrowia lipolytica and
Lactococcus lactis. Recently, Lamprell et al.'”* succeeded

Table 9. Application of MIR Spectroscopy to Bacteria Identification
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in discriminating Staphylococcus aureus strains from dif-
ferent species of Staphylococcus; additionally, strains of
Staphylococcus aureus isolated from raw milk and different
varieties of French raw milk cheese were identified as such.
The results obtained are in agreement with previous findings
reporting that FT-MIR was able to discriminate between five
species of Candida'®® and two strains of Schizosaccharo-
myces and Saccharomyces cerevisiae.'*

Yu and Irudayaraj'®’ pointed out that, under different
physiological conditions, FT-MIR can provide information
related to the bacterial cell wall and also compositional and
metabolic information contained in the cytoplasm. This was
supported recently by Al-Quadri et al.'®® who succeeded in
monitoring biochemical changes in bacterial cells, that is,
Escherichia coli, Listeria innocua, that occurred during
bacterial growth. Following the application of PCA to the
data sets, a clear discrimination between the four phases (i.e.,
lag, log, stationary, and death phase) was observed whatever
the bacterial cell. To confirm this result, the authors later
applied SIMCA, and the percentage of correct classification
of the four phases was found to be satisfactory (Table 9). In
addition, clear differentiation between bacterial cells was
observed, a fact recently discussed by Mietke et al.!*” who
succeeded in differentiating between probiotic and wild-type
Bacillus cereus isolates using FT-MIR. Using the same
approach, studies assessed the potential of FT-MIR to detect
bacteria in fruit juices.?®2% Yu et al.?*! applied FT-MIR
ATR to apple juices contaminated with eight bacteria at
different concentrations (103—108 cfu mL™"). Results showed
that FT-MIR can differentiate apple juice contaminated with
bacteria at a concentration level of 103 cfu mL ™!, corroborat-
ing the findings of others®® who succeeded in using FT-
NIR to differentiate pathogenic strains and apple juices
contaminated with E. coli strains. Recently,?>?% FTIR was
successfully applied to the differentiation of E. coli from
other bacteria in apple juice. In another approach, Ellis et
al.2%72% quantified spoilage bacteria by FT-MIR and classical
plating method, and similar results were obtained by both.
These findings were fully supported by Ammor et al.,*®
reporting that FT-MIR spectroscopy could be used for the
determination of bacterial loads on meat stored at temper-

data measurement

parameter pretreatment mode

wavenumber

error/% of correct
classification/assignment

range bands reference

normalization to one reflectance
absorbance unit at

1640 cm™!

identification of lactic
acid bacteria in cheese

normalization of the
area between 1800
and 750 cm™! to a
value of 1

discrimination of
Staphylococcus aureus
strains from different
species of Staphylococcus
monitoring bacterial
growth of E. coli and
L. innocua

second derivative +
normalization

4000—700 cm™!' 100% at the genus and the species

reflectance  3000—750 cm™! 97% of Staphylococcus aureus

binning + smoothing + reflectance  4000—600 cm™' E. coli: 90%, 96.7%, 93.3%, and

Amiel et al.'?
level; 86% at the subspecies for
collection strains
100% at the genus and 69% at the
species level for wild isolate
100% at the genus and 41% at the
species level for reference strains
collected from other laboratories
Lamprell et al.'**
spectra were correctly classified

Al-Qadiri et al.'®
83.3% of correct classification for
respectively lag, log, stationary, and
death phase
L. innocua: 76.7%, 90%, 100%, and
76.7% of correct classification for,
respectively, lag, log, stationary,
and death phase
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atures ranging varying from 0—15 °C under both conven-
tional and active packaging.

Although some studies used IR methods to directly
determine microorganisms in a food matrix with favorable
results, more work needs to be performed to validate this
approach in a wide range of foods. FT-MIR may have
practical limitations in the long term, unless the specific
analysis needed for determining food safety in a particular
food system is always tied to one or a few microorganisms.

5. Conclusions and Perspectives

During the past decade, a considerable effort has been
made by researchers to explore the possibilities offered by
FT-MIR spectroscopy in the field of food science and
technology. Chief among the areas of research have been
quantitative determination of the main components in food
systems and the authentication of food products, particularly
those produced using a specific and traditional technology
in a limited production region. Quantitative knowledge
concerning the main components in food and food products
is necessary but not sufficient to predict the technological
and organoleptic properties of processed food.

In the present Review, FT-MIR has been shown to
demonstrate its ability to determine various properties of food
products without the use of chemicals or time-consuming
sample preparation. As described in this Review, the FT-
MIR spectrum is rich in information on both physical states
and molecular structures of the main food components (i.e.,
lipids, proteins, carbohydrates, etc.). Once the calibration
stage is accomplished successfully, the determination of a
chemical component of a food or confirmation of its
provenance can be carried out very rapidly for minimal
running costs. This was demonstrated by examples in which
measurement of a given chemical parameter has been
appropriately described and validated, as well as situations
showing potential applications that require further research
and validation. In this context, FT-MIR sensors may provide
more specific information than NIR instruments because the
information given by the latter is based on molecular
overtone and combination vibrations, which are less sensitive
and specific. The combination of FT-MIR with other rapid
spectroscopic techniques such as fluorescence spectroscopies
has, in some applications, provided valuable additional
information related to the quality and/or authenticity of food
products.

An increased research effort in the field of FT-MIR could
address some of the challenges of FT-MIR measurements
of food products and further explore the physicochemical
changes that are (i) mostly not fully understood and (ii)
responsible for the modification of the stability, organoleptic,
and/or typicality of food products.

One application of in situ FT-MIR spectroscopy concerns
the monitoring and control of cultivation of Gluconaceto-
bacter xylinus and production of gluconacetan, a food grade
exopolysaccharide.?”” The authors stated that MIR sensors
could be considered as powerful tools allowing (i) control
of bioprocesses without disturbing the fermentation and (ii)
faster bioprocess development and strain characterization.
The development of chemometric tools and sensors allows
us to foresee the use of FT-MIR in the near future as a tool
for online determination of the overall quality of complex
food systems.

Even though the present Review focused on food industry
products, the principles are broader and generally applicable

Karoui et al.

to other fields (pharmaceutical, biotechnology, etc.). It is
therefore expected that in the coming years, FT-MIR
combined with chemometric tools will continue to grow as
a reliable tool for understanding the molecular basis of food
structure and, as a consequence, food quality.
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